Singing Voice Synthesis Evaluation
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- Built on Qwen2.5-Omni-7B thinker module

- Fine-tuned with LoRA for efficiency and generalization Main Results

Fine-tuned model reduces validation loss: 2.532 — 1.882

Output

- Multi-dimensional feedback covering melody, rhythm, (MLLM), 2.419 — 1.499 (reaction).
creativity, expressiveness, overall impression QA accuracy improves from 22.9% — 65.7%.

- Commentary shaped by musical content and critic persona Completeness rises to 0.937, with clear gains in Novelty and
Inference stronger Precision.

- Commentary generated using top-p sampling to balance Outperforms Gemini-2.5-Flash in multiple dimensions.
coherence and diversity Ablation Study

Using only synthetic data — better coverage but weak realism.

. Using only reaction data — authentic but less systematic.
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_ _ confirming their complementarity.
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Conclusion & Future Research

We introduce the first generative feedback framework for Singing Voice Synthesis (SVS) evaluation, producing natural language
commentary instead of scalar scores. This approach enables interpretable, multi-dimensional assessment and leverages both
synthetic MLLM reviews and authentic human reactions for robustness.

Experiments show clear gains in accuracy, completeness, and novelty, surpassing baselines. Our framework not only enhances
SVS evaluation but also opens paths toward interactive control and RLHF-driven optimization in broader music generation tasks.
Looking ahead, we aim to extend this framework to broader music generation tasks, enable interactive user control, and integrate it
with RLHF pipelines for real-time optimization.




