Generative Feedback for Singing Voice Synthesis Evaluation

Introduction

Singing Voice Synthesis (SVS) has advanced rapidly, yet evaluation remains limited by scalar reward models that lack interpretability and overlook expressive dimensions.

We propose a generative feedback framework that produces natural language commentary, enabling interpretable, multi-dimensional evaluation trained on both synthetic MLLM reviews and authentic human reactions.

Framework

Input

- Singing audio segments
- Textual metadata: song attributes + critic persona profiles

Model

- Built on Qwen2.5-Omni-7B thinker module
- Fine-tuned with LoRA for efficiency and generalization

Output

- Multi-dimensional feedback covering melody, rhythm, creativity, expressiveness, overall impression
- Commentary shaped by musical content and critic persona **Inference**
- Commentary generated using top-p sampling to balance coherence and diversity

Evaluation Protocol

Evaluating commentary with an LLM-based benchmark:

- Musical QA for knowledge
- Completeness of coverage
- Precision against metadata
- Novelty of insights

This provides multi-dimensional, interpretable evaluation.

Dataset Construction

We construct a multimodal dataset where each sample pairs a **10–60s singing segment** with **contextual metadata**, including song attributes and critic personas.

MLLM-generated

reviews: Synthetic commentary across diverse genres, guided by critic personas → systematic coverage of vocal quality.

Human reaction data:

From YouTube reaction
videos → authentic
judgments and diverse
real-world styles.

Experiments & Results

Model Variant	Validation Dataset Loss		LLM-based Reaction Benchmark			
	MLLM ↓	Reaction ↓	QA↑	Completeness ↑	Precision ↑	Novelty ↑
Gemini-2.5-Flash [23]	-		52.8%	0.606	0.917	0.523
Qwen2.5-Omni-7B (Pretrained)	2.532	2.419	22.9%	0.832	0.604	0.688
Fine-tuned (SFT+LoRA)	1.882	1.499	65.7%	0.937	0.669	0.813

Main Results

Fine-tuned model reduces **validation loss**: $2.532 \rightarrow 1.882$ (MLLM), $2.419 \rightarrow 1.499$ (reaction).

QA accuracy improves from $22.9\% \rightarrow 65.7\%$.

Completeness rises to 0.937, with clear gains in Novelty and stronger Precision.

Outperforms Gemini-2.5-Flash in multiple dimensions.

Ablation Study

Using **only** synthetic data → better coverage but weak realism.

Using **only** reaction data → authentic but less systematic.

Combining both subsets yields the best overall performance, confirming their complementarity.

Model Variant	Validation Dataset Loss			
Woder variant	MLLM ↓	Reaction ↓		
Qwen2.5-Omni-7B	2.532	2.419		
Fine-tuned (SFT+LoRA)	1.882	1.499		
w. only MLLM dataset	1.809	1.832		
w. only Reaction dataset	2.057	1.394		
w. unfiltered data	2.262	1.951		

Conclusion & Future Research

We introduce the first **generative feedback framework** for Singing Voice Synthesis (SVS) evaluation, producing **natural language commentary** instead of scalar scores. This approach enables **interpretable, multi-dimensional assessment** and leverages both **synthetic MLLM reviews** and **authentic human** reactions for robustness.

Experiments show clear gains in **accuracy, completeness, and novelty**, surpassing baselines. Our framework not only enhances SVS evaluation but also opens paths toward **interactive control** and **RLHF-driven optimization** in broader music generation tasks. **Looking ahead**, we aim to extend this framework to broader music generation tasks, enable interactive user control, and integrate it with RLHF pipelines for real-time optimization.